Accompanying paper: SAE 2022-01-0540

REVIEW OF VEHICLE ENGINE EFFICIENCY AND EMISSION CONTROL REGULATIONS AND TECHNOLOGIES

April 5th, 2022

Dr. Ameya Joshi

joshia@corning.com

What are the problems we are trying to solve in the transportation sector?

Greenhouse Gas (GHG) emissions Road transport accounts for ~ 1/5th of GHG emissions associated with energy use

Source: Visual Capitalist

Criteria Pollutants

4 million deaths annually attributed to fine particulate (PM_{2.5}) emissions

Nature Comm. 2021, 12:3594 https://doi.org/10.1038/s41467-021-23853-y

<u>Light-Duty</u>

- Regulations : Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

<u>Heavy-Duty</u>

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

We are approaching the last major regulations on criteria pollutants (in major markets)

Tailpipe CO₂ standards continue to tighten across the world Europe enforcing electrification, US making up for lost time

US EPA MY 2023 – 26 standards revised

- ~ 7% CO₂ reduction per year
- Multiplier incentives : MY 2023 24 only
 - EV = 1.5, PHEV = 1.3, 10 g/mi cap
- Full-size pickup credits for hybridization through MYs 2023 – 2024

Path to 55% reduction in tank-to-wheel CO₂ emissions shown > 43% BTE DHE + hybridization + full electrification FEV, 42nd Ir

FEV, 42nd Intl. Vienna Motor Symposium, 2021

Engines are approaching > 45% peak BTE Approach - Dedicated hybrid, lean-burn, pre-chamber, high CR + Atkinson

42% peak BTE Lean Homogenous

Ricardo, JLR, U. Brighton, Garrett, JM SAE 2021-01-0637

Increased charge motion & tumble High-energy ignition system 350 bar injection VNT + 48V e-compressor CR 11 → can be increased

After-treatment:

43% peak BTE 1.5L NA DHE

BYD, SAE 2021-01-1241 FC ↓ 25%, 3.8L/100km, CS mode

- CR 15.5 + Atkinson cycle
- Stroke / bore = 1.25 1.3
 - Tumble ratio > 2X
 - Friction \downarrow 10%

Toyota, PF&L 2021

43.6% peak BTE

Ultra-lean + Jet Ignition + High CR + opt. fuel/lube MAHLE, ExxonMobil SAE 2021-01-0462

Nissan 50% BTE

Paper #2 *Strong Tumble & Appropriately stretched Robust ignition Channel

California Advanced Clean Cars II proposal Broadly phasing in over 2026 – 2028

LEV 4

Fleet average NMOG + NOx

• 30 mg/mi & ZEV phase out

Intermediate soaks

Limits:10min=0.5x, 40min=0.767x, 180+min=1.0xFTP

- Cert. bin : <u>LEV160 & ULEV125</u>
 New bins down to SULEV15
- Separate FTP, US06 & SCO3 cert. US06 standard identical as FTP

Particulates

PM limit 6 \rightarrow 3 mg/mi on US06 Phase-in: 2027 – 2030 (25% each year) Quick drive-away (FTP) Current 20 sec idle + <u>new</u> 8 sec idle

PHEV high powered cold-starts

Cold-start US06 limits per cert bin (e.g. 100 mg/mi NMOG+NOx for SULEV30)

US06 capable PHEVs exempt

ZEV mandates

Target 100% ZEVs & PHEVs by 2035

- PHEVs must have >50 mi AER (and > 40 mi on US06)
- EJ credits for 25% discount off MSRP to qualified low-income household

Euro 7 Light-duty Not a formal proposal yet - based on AGVES meetings (EU Commission)

Units: Gas mg/km, PN #/km	NOx	PN	PM	CO	HC	NH ₃	НСНО	N ₂ O ^(b)	CH ₄ ^(b)
Euro 6d – Gasoline	60	PN ₂₃ = 6x10 ¹¹ GDI only	4.5	1000	THC = 100 NMHC = 68	-	-	-	-
Euro 6d – Diesel	80	PN ₂₃ = 6x10 ¹¹	4.5	500	HC + NOx = 170	-	-	-	-
Euro 7 Fuel & technology neutral	20 – 30	PN ₁₀ = 1x10 ¹¹	2	400 ^(a)	NMOG 25 – 45	10	5	10 - 20	10 - 20
	No con	formity factors		(^{a)} CO included in	RDE ^(b) O	r N ₂ O + CH ₄ <	< sum of indiv	/idual limits
In-service conformity On-road PEMS testing					Main changes in	Euro 7			
Trip				Testing un	der "all" normal o	driving con	ditions		
Boundary conditions			E	Norma xtended (L	al : - 7 to + 35 °C imit 3x): - 10 to +	C, Alt. 1,600 45 °C, Alt.	0 m 2,200 m		
Cold start		Budget for total	emission	s in mg or	total PN for < 16	km. Power	restrictions	in first 1 – 2 k	m tbd.
Other		Regen er	nissions i	No confo ncluded –	ormity factors (RD averaging of 2 tes	E limits = \ sts, one wit	NLTP) th and one w	ithout regen	

<u>Light-Duty</u>

- Regulations : Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

<u>Heavy-Duty</u>

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

Gasoline after-treatment systems for ~ Euro 7 / ACC 2.0 / China 7

Low thermal mass substrates can help meet upcoming standards with good margin and/or reduced PGM Corning, Sino-Pt Metals Cat., SGMW, SAE 2021-01-0581 doi:10.4271/2021-01-0581

Low mass heats up faster Resulting in lower cumulative emissions TWC Bed 600 NOx emissions 800 NOx [mg] -350 °C 100 600 ∆T=140 °C TWC temperature 400 200 200 20 180 200 Time [s] 'n 20 Time [s]

Engine: 1.5L MPI, China 6b without RDE

Formulation	Substrate	PGM loading
Group A	750/2 STD	100%,
	(OEM system)	
	800/3.0 Low Mass	100%
Group B <u>*</u>	750/2 STD	100%
	800/3.0 Low Mass	75%

*New PGM baseline with optimized washcoat technology at same washcoat loading.

25% less PGM for low TM substrate

HC traps could help reduce cold start emissions – various innovative substrate and coating technologies being demonstrated

Corning 30th Aachen Colloquium 2021

Ultra-high porosity substrates for in-wall zeolite coating

ORNL, DOE Annual Merit Review, 2021

			HCT -	+	GPF
gine	-po	ccTWC		Tr	rap (zeolite/Pd)
Eng	2				TWC (Pt/Pd/Rh)

HCT reduces THC by 65 - 77% over 1^{st} bag of FTP cycle

<u>Vehicle</u> MY2018 GDI pick-up trucks, 2.7L turbo V6 and 5.3L NA V8

Ammonia slip catalysts can help meet Euro 7 NH₃ proposed limit

Umicore, SAE 2021-01-0580 doi:10.4271/2021-01-0580

9 China 6b compliant vehicles tested on WLTC / RTS-95

Vehicle	A	В	c	D	8	F	G	н	1
Engine Type	TD L4	TD L4	TD L3	MPI L4	TD L4	TD L4	TD L3	TD L4	TD L
Vehicle Type	ICEV	ICEV	ICEV	HEV	ICEV	ICEV	ICEV	ICEV	ICEV
Displacement (L)	1.6	2.0	1.5	2.0	1.5	1.4	1.5	1.6	1.0
Catalyst Status	Fresh	Fresh	Fresh	Aged	Aged	Aged	Aged	Aged	Aged
Turbocharged direct in	njection (TD), N	Aultipoint inje	ection (MPI),	In line four or	three cylinde	ers (L4 or L3))		

Production after-treatment – TWC, GPFs

With add-on ASC, NH₃ emissions <10 mg/km

uF TWC not as effective at NH₃ control but can address

Highly dispersed catalysts synthesized via "atom-trapping" method promise very high reactivity U. New Mexico, WSU, et al. Applied Catalysis B: Environmental 284 (2021) 119722

<u>Light-Duty</u>

- Regulations : Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

<u>Heavy-Duty</u>

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

Advanced GPFs enable gasoline vehicles to be "negative" emitting

GPFs being developed for Euro 7

Very high "out-of-the-box" filtration (incl. < 23nm particles) at lower pressure drop

Particulate emissions evaluated under Euro 7-like conditions with advanced GPF

EU Commission, JRC Catalysts 2022, 12, 70.

Vehicle:

2019 Euro 6d-Temp, 1.2L GDI with TWC + bare cc-GPF <u>Fuel</u>: E5 with PMI 2.2 ("bad quality" market fuel) <u>GPF</u>: Bare 200/8 with 55% porosity, hierarchical pore structure

> 1013 US06 cold OUS06 hot SPN_{10,55} emissions (#/ Km) 10,55 emissions (14/ Km) 10,50 emissions (14/ Km) 10,50 emissions (14/ Km) OUS06 hot (L) $\Delta\Delta$ WLTC cold (L) △ 0-65 km/h △ 0-145 km/h Urban cold dyn Rural dyn □ Motorway dyn 10⁸ - 10 10 20 Ambient Temperature (° C)

SPN > 10 nm with catalytic stripper

<u>Tests</u>: WLTC and RDE with challenging conditions (~Euro 7):

Clean GPF, dist. < 16 km, low T with auxiliaries, hard accelerations, dynamic driving on slope, 90% payload, etc.

GPFs are very effective at reducing toxicity of PAHs associated with engine soot

U.S. EPA, CSS, 32nd CRC Real World Emissions Workshop, 2022

<u>Vehicle</u>: 2011 Ford F150, 3.5L Ecoboost, wall-guided GDI Commercial cGPF in uF position Ø5.66" x 4", 300/12, coated

- PM reduced by > 94% and well below CA limit of 1mg/mi
- PAHs reduced by >99% (filter-collected) and 55% (gas-phase)

US needs to enforce GPFs: Particulate emissions are higher from US cars vs. EU – and they affect disadvantaged communities disproportionately

Same models in US are emitting much higher particulates than those sold in Europe

Gasoline particle emissions is a leading contributor to environmental injustice

EmissionsAnalytics, on-road measurements

Sci. Adv. 7, eabf4491 (2021) U. Illinois at Urbana-Champaign, U. Washington, UT Austin, UC Berkeley, U. Minnesota

<u>Light-Duty</u>

- Regulations : Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

Heavy-Duty

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

Light-commercial vehicles – Technology packages used to meet Euro 6d final

regulations described Volkswagen, 42nd Intl. Vienna Motor Symposium, 2021

Light-duty diesel after-treatment systems for ~ Euro 7

SAE INTERNATION

Light-commercial vehicles : Pathway to meet Euro 7 limits under a wide range of driving conditions

Low NOx and low wells-to-wheel CO₂ demonstrated through advanced aftertreatment and renewable fuels AECC, CONCAWE Sustainability 2021, 13, 12711

Particle number

CO₂

EGR

<u>Light-Duty</u>

- Regulations : Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

Heavy-Duty

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

Heavy-duty regulatory roadmap in major markets

In-use PEMS testing shows high NOx emissions at low loads / idling

UC Riverside, SCAQMD https://doi.org/10.1016/j.scitotenv.2021.147224

 \rightarrow Almost 1/3rd of emissions during idling

California Ultra-Low NOx Omnibus Rulemaking

Regulatory Change

Reference US 2010 NOx 200 mg/bhp-h on FTP PM 10 mg/bhp-h on FTP IUC : NTE method NOx 75% ↓, PM 50% ↓

New: Low-load cycle IUC : MAW method OBD data transmission

NOx 90% \downarrow IUC : Cold-start included GHG Phase 2: CO₂ 25% \downarrow

US EPA Cleaner Trucks Plan proposed (March 2022)

Final rule after 45 day comment period

Option 1 (~ CARB after MY 2031):

<u>NOx limit</u>: 20 mg/bhp-hr after MY 2031 <u>FUL</u> : Increases to 600K mi in 2027 and 800K mi in 2031

Option 2:

<u>NOx limit</u>: Fixed at 50 mg/bhp-hr after MY2027 <u>FUL</u>: Fixed at 650K mi

Test changes

- New low-load cycle (LLC) test similar to CARB
- Off-cycle testing : Similar to California's 3-Bin MAW method
- HD SI engines will require testing on SET lab cycle (previously only for CI engines)

Multi-pollutant rule: Targeted revision of GHG Phase 2 MY2027 – 2029 standards for applications with significant electrification: School buses, transit buses, commercial delivery trucks, and short-haul tractors

- Credit multipliers for early compliance, and credits for HEVs/BEVs/FCEVs
- No emission credit multipliers for HEVs/BEVs/FCEVs

Euro VII (HD) Proposal Based on AGVES Meetings (EU Commission)

Euro VII CLOVE proposal Units: Gas mg/kWh, PN #/kWh	NOx	PN ₁₀	ΡΜ	CO	NMOG	NH ₃	N ₂ O	CH ₄
100 percentile	175 – 350	5x10 ¹¹	12	1500 – 3500	75 – 200	65	160	85 – 100
90 percentile	90	1x10 ¹¹	8	200	50	65	60	50
Budget ≤ 3xWHTC work	100 – 150	2x10 ¹¹	10	600 – 1250	50 – 75	65	140	30

Lower limit assumes cc-SCR, higher limit assumes active heating. Limits up to 700K km for N3 > 16t and 300K km for others.

In-service conformity On-road PEMS testing	Euro VI-D (2019)	Euro VI-E (2021)	Euro VII (2025+)
Trip	30% Urban, 2	5% Rural, 45 Motorway%	Testing under "all" normal driving conditions
Power threshold		> 10% P _{max}	No P threshold : Inclusion of low load emissions
Payload		10 - 100%	No payload restrictions
Boundary conditions	- 7 to + 3	88 °C, Alt. 1,600 m	Normal : - 7 to + 35 °C, Alt. 1,600 m Extended: - 10 to + 45 °C, Alt. 2,200 m (Limit 2x)
Cold start	Excluded	Included, $T_{coolant}$ > 30 $^{\circ}$ C	Included, all emissions from engine start
Evaluation method	90 th percenti	le < limit for compliance	3 compliance methods / limits (see below)
Durability	N2,N3, M3 < N3 > 10	16t: 300,000 km / 6 yrs 6t: 700,000 km / 7 yrs	N2,N3, M3 < 16t: 700,000 km N3 > 16t: 1,200,000 km

	Technology for low NOx	Impact on NOx	Impact on CO ₂
	Engine calibration	Lower engine out NOx	Little / none
	Cylinder deactivation	Increased EO temp. $ ightarrow$ higher NOx conversion	Lower CO ₂
ine	EGR pump	Better EGR authority	Improved pumping loop efficiency
Eng	SuperTurbo	Turbine bypass allows for early SCR warm-up	Engine heating can be offset
	Opposed piston	Elevated temp. for early LO	Lower heat loss \rightarrow lower CO ₂
	Hybridization	Lower fuel consumption and emissions	Lower CO ₂ , can offset EHC penalty
2	Increase SCR volume and catalyst loadings	Improved deNOx at high flow rates	Increased backpressure
I SC	Added cc-SCR w/ twin dosing	Early light-off and urea dosing possible	Increased backpressure
deo	+ cc-DOC for NO ₂	Increased fast SCR, slower light-off of cc-SCR	Increased backpressure, N ₂ O
Ad	SCR on filter	Early light off of main (uF) SCR	Passive regen is complicated
+	Model based A/T controls, NH ₃ storage	DeNOx sensitive to level of pre-stored NH ₃	Lower urea consumption
	Late & multiple injections	Early light-off	Fuel penalty, increased HC/CO
eat	Heated urea dosing	Early urea dosing, lower deposition risk	Some fuel penalty for heating
т +	Catalyzed DEF solution	Low nitrate deposits, earlier dosing possible	Can eliminate heated dosing
	Electrical heater / EHC	Early light-off	Need to manage fuel penalty
e	Diesel \rightarrow CNG / LPG / Gasoline / H2-ICE /	Lower engine out NOx and/or simpler A/T	Watch for CH ₄
Ъ.	Low S, low impurity fuels	Extended durability	Lower $CO_2 \rightarrow$ reduced desulfation

Dynamic cylinder deactivation increases exhaust temperature and delivers significant NOx and CO₂ reductions Tula SAE COMVEC 2021

Baseline Engine Specifications:

- Cummins X15 Efficiency Series
- 15L I-6 HHD Diesel
- > 373 kW (500 hp) Max Power
- 2508 Nm (1850 lb-ft) Peak Torque
- ENG > HP-EGR
 - XPI High Pressure Common Rail Fuel System
 - Single Stage Variable Geometry Turbocharger

Baseline Aftertreatment Specifications:

- With dynamic skip fire, engine out temperature increased by 50 – 90° C, and > 225° C over map
 - HD-FTP : 74% reduction in NOx with 5% CO₂ reduction
 - LLC: 23% reduction in NOx with 0.8% CO₂ reduction
 - Implemented on Freightliner Cascadia

Engine Torque (N-m) 300 000 100

600

SWRI/CARB Low NOx study: Latest results with system aged to 800K

SWRI, CRC Real World Emissions Workshop, 2022

Engine:

- Cummins 2017 X15 6-cyl. + modified calibration
- + added advanced technologies EGR cooler bypass, Cyl. deactivation

After-treatment: Stage 3 Rework

<u>Note</u>:

- Almost no change in CO₂ (not shown)
- Infrequent regen. Upward adjustment factor not included, adds 0.002 to FTP-RMC, 0.005 to LLC

Paper # (if applicable)

Electrically heated catalysts for HD Low NOx ?

AVL CLEERS 2021 & MTZ 03/2021

PACCAR, Vitesco Aachen Colloquium, 2021

Engine: 2017 PACCAR MX-13, HE400 After-treatment: + 48V EHC + cc-SCR (dual dosing)

SAE INTERNATIONAL

Paper # (if applicable)

Opposed piston engine : Real-world on-vehicle data

AchatesPower, CRC Real World Emissions Workshop, 2022

2019 Peterbilt 579 sleeper 10.6L 400 hp engine

Walmart fleet in-use data 10+% fuel economy advantage vs reference 2021 DD15 engine

Dev. aged

6.7 – 10.8 mpg vs 5.7 – 7.7 on ref. truck

FTP NOx : 0.016 g/bhp-hr

> 30% margin on in-use 3-bin MAW 2031 limits

1st Gen : Peak BTE 47.1%

				\sim				
	Achates_	Achates_	Achates_	Average	EPA Low	Margin to	CARB	Margin to
	D1	D2	D3	Average	2031+ IUL	EPA	2030+	CARB
BIN 1	0.25	0.05	0.15	0.15	11	99%	7.5	98%
BIN 2	0.048	0.039	0.039	0.042	0.105	60%	0.075	44%
BIN 3	0.024	0.015	0.022	0.020	0.042	52%	0.030	32%

2nd Gen : Peak BTE 49.2%

Added hardware SuperTurbo, EGR pump

vs Gen 1:

5% lower CO₂ on SET, 8% on Hot FTP 30% higher exh. heat for cat. LO- mode

Underfloor SCR only

Modeled based on measured engine out

	Achates Power HD Second	2027 Regulatory	Improvement vs.
	Generation Engine	Limits (CARB/EPA)	2027 Standards
SET Cycle	0.014 g/hp-hr NO _x	0.020 g/hp-hr NO _x	30%
	415 g/hp-hr CO₂	432 g/hp-hr CO ₂	4%
FTP Cycle	0.007 g/hp-hr NO _x	0.020 g/hp-hr NO _x	65%
	465 g/hp-hr CO ₂	503 g/hp-hr CO ₂	8%
Low Load Cycle	0.021 g/hp-hr NO _x	0.050 g/hp-hr <i>NO_x</i>	58%
Clean Idle	0.02 g/hr NOx	5 g/hr NO _x	99.6%

Low NOx emissions demonstrated on a European truck

JRC (EU Commission), AECC, FEV, Horiba, AIP Catalysts 2022, 12, 184

Idling

DPF

regeneration

Hot

Hot

23

23

no

no

Paper # (if applicable)

Sub-23 nm and urea derived particles could push tailpipe PN > Euro VII limit

Cummins, UC Riverside, W. Virginia Univ., Horiba, AVL, TSI SAE 2021-01-5024 doi:10.4271/2021-01-5024

1. Measurements using evaporation tube

Catalytic stripper important for > 23nm as well ! (at least for NG engines)

(degree 250 0.50 200 0.25 SCR out 0.00 1000 2000 4000 5000 6000 Sub-23nm > 23nm 3.0E+10 > 23nm Sub-23nm 2.0E+10 1.0E+10 5000 Cycle time (5 Hz)

2. Measurements using catalytic stripper (2 CNG engines)

Engines : 2 diesels with DOC, DPF, SCR 1 diesel with DOC, SCR | 2 NG with TWC <u>166 test cycles</u>: NRTC, WHTC, WHSC, RMC, ...

Sub-23 nm particles increase PN count by

10% to 3.8X (280%)

Engine	Fuel	Aftertreatment	Test runs	CPC7:CPC23 ratio (Min, Avg, Max)
AA	ULSD	DOC + SCR	7	1.30, 1.30, 1.40
AB	ULSD	DOC + DPF + SCR	21	1.40, 2.37, 3.80
AB	B20	DOC + DPF + SCR	12	2.10, 2.74, 3.40
AC	NG	3-way catalyst	35	1.50, 1.96, 3.40
AD	ULSD	DOC + DPF + SCR	64	1.10, 1.40, 3.10
AE	NG	3-way catalyst	27	1.25, 1,60, 3.20

Majority of sub-23nm particles associated with hydrolysis & decomposition of DEF at T > 250 °C

Paper # (if applicable)

<u>Light-Duty</u>

- Regulations : Fuel economy and criteria pollutants
- Gasoline emissions control Gas species
- Gasoline emissions control particulates
- Diesel emissions control

<u>Heavy-Duty</u>

- Ultra-Low NOx regulations (CARB, Euro VII) and technology pathways
- Greenhouse gas regulations and technology pathways
 - Diesel, alternative fuels, electrification

All pathways for decarbonization being pursued – no silver bullet

Super-Truck II : 55% brake thermal efficiency demonstrated

Strategies from Super-Truck II participants for 55% BTE engines

	Daimler	Voltvo	Cummins / Peterbilt	Navistar	PACCAR / Kenworth
Combustion & Air Mgmt	 Thermal barrier coatings (TBC) Miller cycle 2 stage turbo & 2 stage c-EGR 	 TBC High CR 23:1, wave piston EGR pump Optimized turbocharger Miller cycle 	 Low heat transfer Reduced friction High efficiency turbocharger 	 Cylinder deactivation Fuel injector and cylinder bowl optimization 	 Thermal barrier coatings (TBC) 2-stage turbocharger
Waste heat recovery	Recovery from exhaust & EGR	48V e-WHR Dual-loop recovery from coolant & Exhaust	Dual HP & LP loop Recovery from coolant, EGR & exhaust	+3% BTE demonstrated	On track for +4% BTE Dual HP & LP loops, recovery from coolant + exhaust
After- treatment	cc-SCR w/ dual dosing	High cell, thin wall subs., low ∆P short DPF/SCR	Dual loop EGR On-engine DOC/DPF	cc-SCR/AMOX and also EHC after upstream SCR – durability & fuel penalty being evaluated	48 V e-heater + SCR in cc position, dual dosing. Targeting 2027 UL NOx.

HD ZEVs^{*} : CARB mandates in place, OEMs have announced several models Long-haul challenges – large battery pack (weight, price, charging time), infrastructure

California Advanced Clean Trucks Regulation

Also adopted by Washington state, Oregon, New York, New Jersey and Massachusetts

Manufacturer ZEV* requirements as a % of annual sales

Plug-in hybrids get partial credit based on all electric range

6 states have adopted ACT, including California

MOU signed by 15 states + DC - Represent ~ 34% of HDV market 30% sales by 2030, 100% by 2050

Model Year (MY)	Class 2b-3	Class 4-8	Class 7-8 Tractors
2024	5%	9%	5%
2025	7%	11%	7%
2026	10%	13%	10%
2027	15%	20%	15%
2028	20%	30%	20%
2029	25%	40%	25%
2030	30%	50%	30%
2031	35%	55%	35%
2032	40%	60%	40%
2033	45%	65%	40%
2034	50%	70%	40%
2035+	55%	75%	40%

> 1MWh battery pack needed for 500+ mile range

* ZEVs defined as vehicles with zero tailpipe CO₂ (BEV, FCEV)

Wells-to-wheel analysis: Battery electric long-haul trucks could offer ~ 15% GHG reduction by 2030. But PM emissions could increase by 100%.

WtW GHG, Long-haul trucks

Argonne Natl. Lab Environ. Sci. Technol. 2021, 55, 1, 538–546

WtW GHG Emissions, 2019 US Grid

- Class 4 6 BEV trucks offer significant WtW CO₂ reduction
- Class 8 trucks offer little CO₂ reduction today, improve to 15% by 2030
- Emissions vary across regional grids \rightarrow in some parts CO₂ increases up to 25%
- PM emissions predicted to increase due to coal-based emissions (need better controls)

SAE INTERNATIONAL

PM emissions increase by 2X

Battery pack and fuel cell prices need to significantly reduce for total cost of ownership parity for BEV and FCEV long-haul trucks vs diesels

FASTSim tool used to model various powertrains and applications over representative drive cycles

Some key assumptions in the study

Battery pack price:
 \$197 /kWh today → \$100/kWh (2025) → \$80 /kWh (2050)
 Battery pack mass: 4.7 kg/kWh today → 2.5 kg/kWh (2050)

• H_2 price \$10/kg today \rightarrow \$4 (2050)

Fuel cell cost:
 \$197/kW today → \$60/kW (2050)

 Diesel Class 8 efficiency : 47% today → 52% (2025) → 57% (2050)

• Diesel cost :

Advanced engine : +\$1,500 in 2025, -\$6,000 (2050) WHR adds \$10K in 2025, \$5K (2050) Single-Shift, Volume-Limited scenario Ownership (\$/mi) No dwell time costs No lost payload capacity costs Multi-Shift, Cost of Weight-Limited scenario tal + Dwell time costs ō + Lost payload capacity costs

NREL (2021) https://www.nrel.gov/docs/fy21osti/71796.pdf

Class 8 long-haul tractor (750-mile range)

Total cost of ownership of H2-ICE similar to diesels by 203080% carry-over parts from dieselsMAN, 42nd I

MAN, 42nd Intl. Vienna Motor Symposium, 2021

H45 enain

H45 16,8 L 6 / Inline

up to 2600 Nm up to 375kW/510hp 1:11-13

170 bar

80% carry-over parts from diesels

- H2 and CH4 specific parts
 - Pistons/Liners

Engine specific parts

- Single-stage turbo
- Cylinder head
- Ignition system
- Gas handling (H2 and Air)
 - Control unit

Engine can provide comparable

torque as a 13L diesel

engine speed [rpm]

Intake throttle

D26 mid - 13L Diese

-H45/E45 max - 17L ICE

-H45 std - 17L H2 ICE

600 1.800 2.000

Peak BTE 45% (similar to diesel) – but with 99% lower NOx at road load point

Engine maps w/o EGR

After-treatment : Only SCR

Ammonia oxidation catalyst

48

- Engine upsizing for transient response
- Direct injection for improved efficiency and low end torque
- Fuel tank : 700 bar system
- Single-stage turbo sufficient to reach $\lambda = 2.7$ and low engine out NOx

ue 2200 1.000 t to reach 1.400 1.000 1.000

Pa

2.600

2.400

SAE INTERNATIONAL

Decarbonization will require massive investment in renewable electricity and minerals

 \rightarrow equivalent of adding ~ 20 gigafactories each year for the next ten years

SDS = Paris agreement (< 2° C), NZE = net-zero by 2050

Annual solar PV capacity additions need to reach 630 GW by 2030 \rightarrow *equivalent* to installing the world's current largest solar park roughly every day

25x

Lithium Graphite Cobalt

50

40

30

20

10

42x

ndex (2020 = 1)

IEA, "The Role of Critical Minerals in Clean Energy Transitions", May 2021

Paper # (if applicable)

7x

Rare

earths

Nickel

49

Diverse technology solutions available to achieve clean air goals

R & D	TECH MATURITY & CONSUMER ACCEPTANCE		EXISTING INFRASTRUCTURE
Correct	Avoid	Shift	Improve
CO ₂ capture Synthetic or e-fuels	Telecommuting Geo-fencing Electrification Green H ₂ , NH ₃ , etc. Recycling	Public transportation Rail & marine for goods Ride-sharing Renewable fuels Cycling	Improved ICE efficiency Hybridization Improved aftertreatment systems Light-weighting, aerodynamics etc. Predictive cruise control, platooning Waste heat recovery Particulates from tires

Dr. Ameya Joshi Corning Incorporated

For a copy of the slides:

joshia@corning.com

https://www.linkedin.com/in/joshiav/