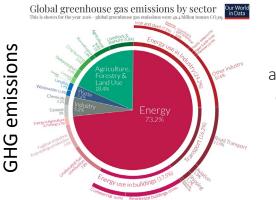


For a copy of the slides, connect on LinkedIn or email @ joshia@corning.com

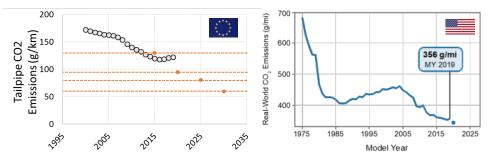
WCX Digital Summit

Review of Vehicle Engine Efficiency and Emissions Based on SAE 2020-01-0352

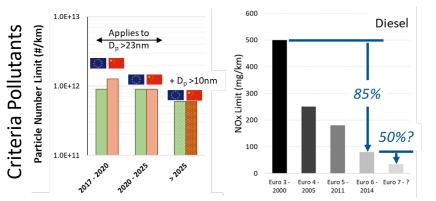
Dr. Ameya Joshi April 15th, 2021



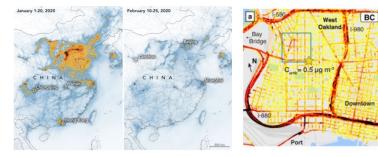
CORNING



What are the problems we are trying to solve ?



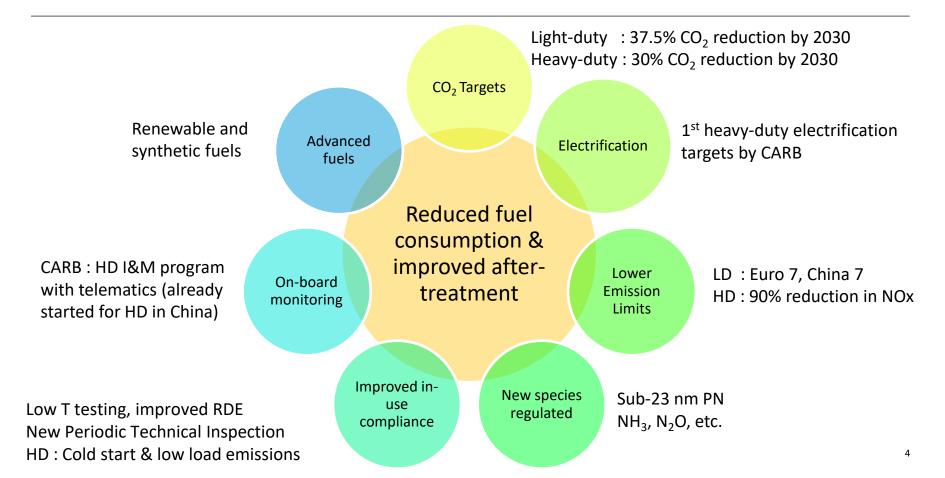
Road transport accounts for ~ 1/5th of GHG emissions associated with energy use Source: Visual Capitalist Reductions in tailpipe CO₂ have stalled in the recent years

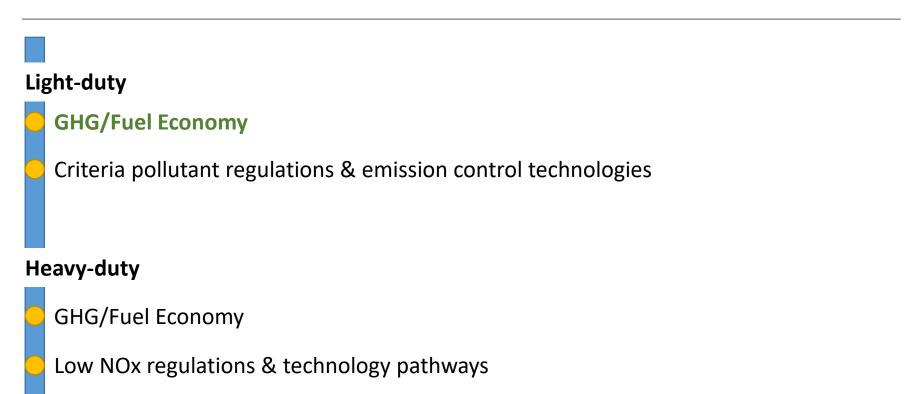


OurWorldinData.org - Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

Regulations focused on NOx and particulate reduction

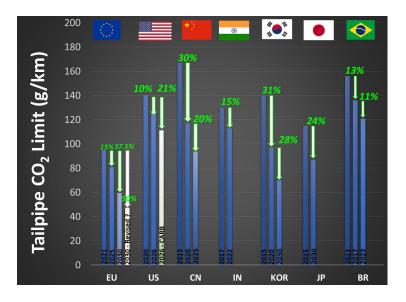
High emissions in real-world, urban driving conditions


NO₂ concentrations before / after Covid lockdowns


NO₂ concentrations in an urban center

What are the options to solve these problems ?

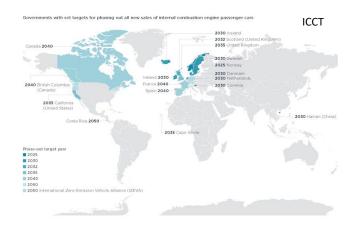
R & D	TECH MATURITY &	CONSUMER ACCEPTANCE	EXISTING INFRASTRUCTURE
Correct	Avoid	Shift	Improve
	Telecommuting	Public transportation	<i>Covered in this talk</i> Improved ICE efficiency
CO ₂ capture	Geo-fencing Covered in this talk	Rail & marine for goods	Hybridization
[]	Electrification		Improved aftertreatment systems
Synthetic or e-fuels Covered in this talk	Green H ₂ , NH ₃ , etc.	Ride-sharing Renewable fuels	Light-weighting, aerodynamics etc
	Recycling	Cycling	Waste heat recovery
SAE International® WCX Digital Summit			Automation, connectivity, predictive control

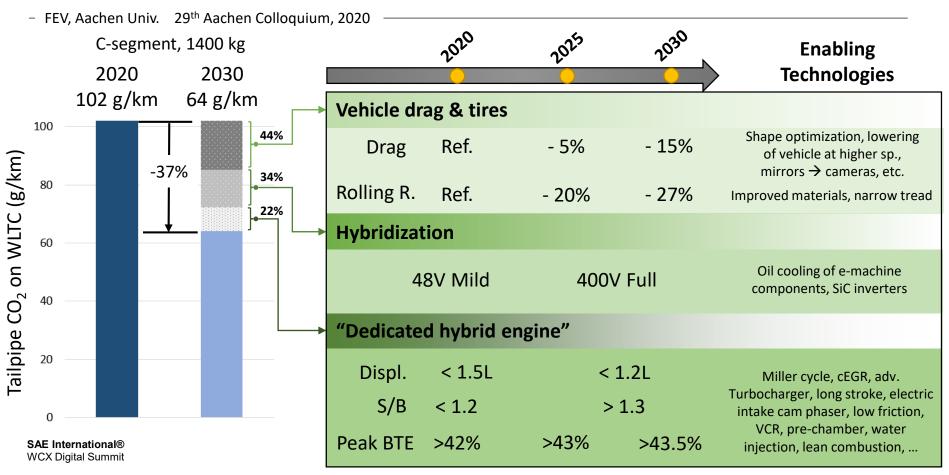

Our industry is adapting to various new – and often conflicting – regulatory drivers

CO₂ / Fuel Economy Regulations ...

... And ICE ban announcements

Changes since the last review (2020)

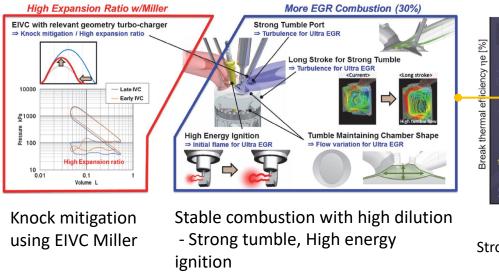

- EU : Further reduced limits likely following Climate Law
- China : 2025 standards published (FC = 4L/100km)
- US: Revision of MY 2026 nationwide standards likely
- Korea : Standards set to 2030


UK government confirms 2030 ICE ban

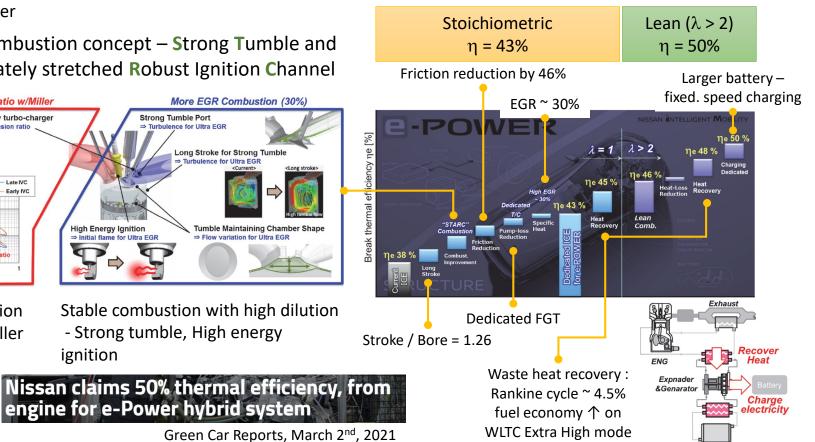
Autoweek.com Dec. 7, 2020

Japan Plans to Ban Gasoline Car Sales by 2035, but Hybrids Will Remain

Road to 59 g/km fleet CO₂ by 2030

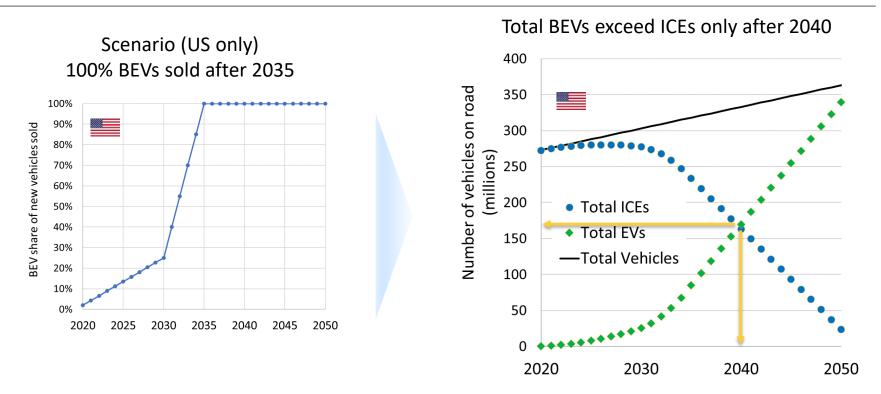


Pathway to 50% brake thermal efficiency outlined : High EGR, Lean combustion, Waste heat recovery and fixed speed/load operation for charging battery


Nissan, 29th Aachen Colloguium, 2020

1.5L 3-cylinder

STARC combustion concept – Strong Tumble and Appropriately stretched Robust Ignition Channel



engine for e-Power hybrid system

SAE International® WCX Digital Summit

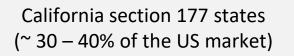
Hundreds of millions of ICE vehicles will be on the road for decades ... even with rapid electrification

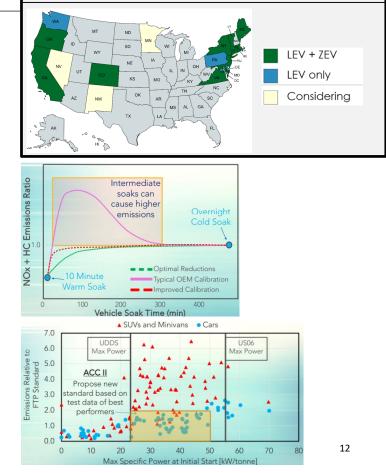


It is imperative that we continue to improve upon the ICE technology

WCX Digital Summit

Light-Duty Criteria Pollutant Regulations

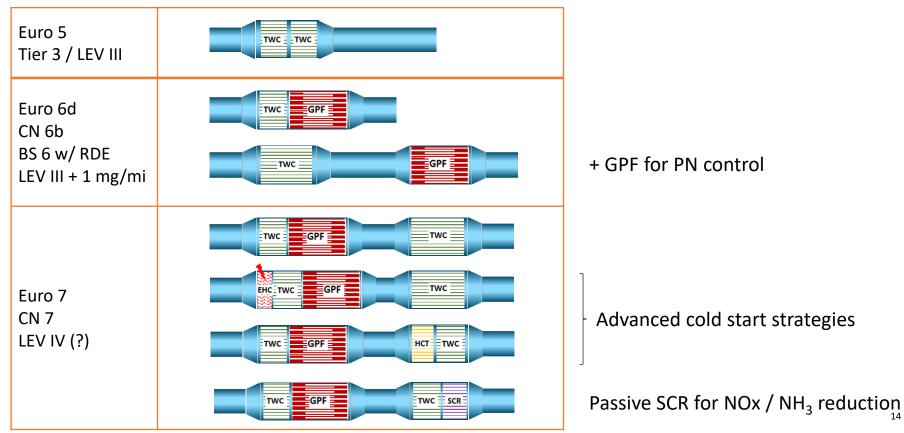

Speculation


			2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
		EPA				Tier 3 (phase in)				Tier 4 + PM 1 mg/mi?			
USA	EALIFORNIA	CARB			LEV III PI	LEV III Phase in NMOG + NC				JLEV 20 ? USO6 3	i mg/mi All FTP 1 mg/mi		
EU				e11 #/km GDI < 1.43, PN 1.5	CF NOx 1.0, PN 1	.5			7 : Technology net	ıtral, NOx < 35 mg	/km, PN limit redu n, NH3/HCHO/N20		ation
ЧL				v PNLT Phase 1-3)	Diesel RDE (CF=2	.0) Gasoline RDE	Diesel PN 6e11 #	#/km ? GDI PN 6e11 #/kn	n (WLTC)?				
Korea	# #	Diesel			EU6d Final					Euro	o7?		
KUI CO		Gasoline				K-LEV III (phase in)				LEV IV + 1 mg/mi?			
China	*)	Nation	CN 5 (~EU5)	CN6a PN 6e11 #/km RD	E Monitor		CN	16b		CN 7 (possibly earlier in key areas) ?			
		Beijing		CN6b w/o RDE		RDE CF TBD			CF tightening	CF = 1.0 ? PN down to 10 nm			
India	۲			BS VI (~EU6b) RDE Monitor				RDE	CF=?			BS	VII ?
Brazi	\diamond		PROC	DNVE L6		PROCONVE L7 (~ Tier 3 Bin 125)		NMHC+NOx = 50		PROCONVE L8 40	3() + PM 3mg/km	
Chile	*		US Tier 2 Bin	5 AND Euro 5	Euro 6b (Tie	er 3 bin 125)		EL	uro 6c (Tier 3 bin 7	ס)		Euro	6d ?
Russia				EU5					EL	16			
Thailan	d			E	U4		E	15			EU6		
Austral	ia 📲	*			E	15					EU6		
	nations ECoWAS		~	EU2				EU4				EU	5?

11

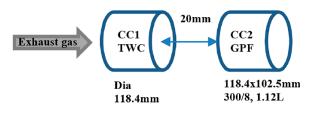
California : Possibilities for LEV IV "Advanced Clean Cars II" workshop - Sept 16th, 2020

- 1. Further reduction of NMOG + NOx limits
 - Separate fleet average limit for non-ZEVs
 - Possible reduction to 20 mg/mi (SULEV 20)
- 2. Elimination of SFTP and certification to separate FTP, US06, SCO3 standards
- 3. Testing over various cold soak durations
- 4. Shorten FTP idle time to 5 sec and limit on idling emissions
- 5. Standard for high powered cold start emissions from plug-ins
- 6. PM limit reduction to 3 mg/mi on US06 cycle (aggressive driving)


Euro 7 proposals

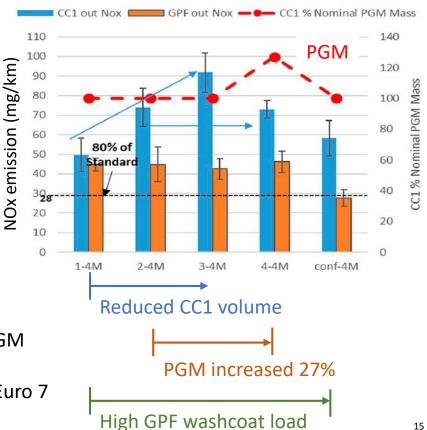
Expect broad changes : Reduced PN & NOx limits, modified RDE, no CF, ...

	Euro 7: Technology & fuel neutral (Diesel = GDI = PFI = CNG)									
		← Ne	ew specie	s regulat	ed →					
	PN : #/km Rest: mg/km	СО	NMOG	NOx	РМ	PN	NH ₃	CH₄	N ₂ O	нсно
	Euro 6	1000	68	60 CF = 1.5	4.5	6x10 ¹¹ >23nm	-	-	-	-
	Euro 7 scenario	400	45/25	30/20 CF = 1.0	2	1x10 ¹¹ >10nm	10	10	10	5
	RD	E limit fo	r CO							
Euro 6 ex Normal con Extended co	boundary conditio (tended: -7 to +35 f (ditions : -7 to +3 onditions: - 10 to +4 be higher for exten	°C 35°C 45°C	No urban/ under an Regen emis	lified test of 'rural/moto y "normal' ssions inclu nitoring of	orway → " driving r uded thro	testing routes ough on-	Cum	ulative bu	art emissi udget for t nit at > 16	first 16 km


Gasoline after-treatment architectures

TWC = three-way catalyst, GPF = gasoline particulate filter, EHC = electrically heated catalyst, HCT = hydrocarbon trap, SCR = selective catalytic reduction

Meeting China 6b / Euro 7 limits Larger TWC, high PGM and high washcoat loading for GPF


Umicore, SAE 2020-01-0654 doi:10.4271/2020-01-0654

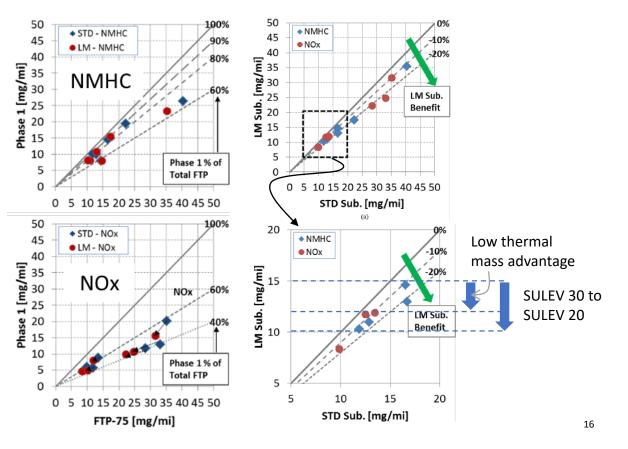
Example: China 6b,1.6L GDI

	TWC @CC1		GPF @CC2		
System No.	Vol (liter))	CC1 PGM Mass (Relative %)	Pd/Rh (g/ft3)	Washcoat (Relative)	
1-4M	1	100	36	Medium-A	
2-4M	0.76	100	36	Medium-B	
3-4M	0.6	100	36	High	
4-4M	0.76	127	36	Medium-C	
Conf-4M	1	100	36	High	

- Larger TWC volume is more important than higher PGM
- High washcoat GPF essential for meeting China 6b / Euro 7 limits

Lower thermal mass substrates : up to 20% \downarrow in NMHC & NOx

Test-to-test variability needs to be controlled as we approach near-zero emissions


Corning SAE 2020-01-0652 doi:10.4271/2020-01-0652

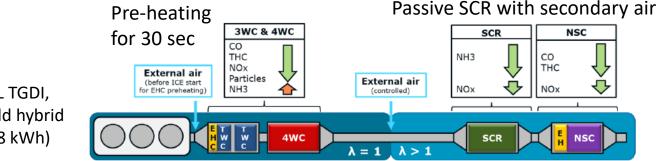
Vehicle Platform	Engine	Emissions Cert.	Cold-start Strategy
Vehicle A	1.6L Turbo	LEV II - PZEV	Lean-start idle
Vehicle B	2.4L	LEV II - SULEV	Lean-start idle
Vehicle C	2.0L Turbo	LEV II - ULEV	Rich-start idle
Vehicle D	1.5L Turbo	T3B30	Rich-start idle
Vehicle E	2.0L	T3B70	Lean-start idle

Bag 1 cold-start emissions account for 60 – 90% of total emissions

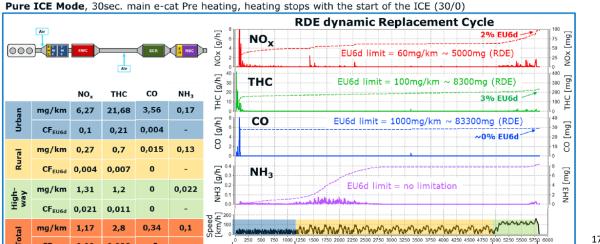
> Low thermal mass = Early catalyst light-off = Lower cold start emissions

SAE International® WCX Digital Summit

"Zero-impact" emitting vehicles Combination of hybridization, pre-heating, SCR and slip catalysts


CFEU6d

0,02


0,028

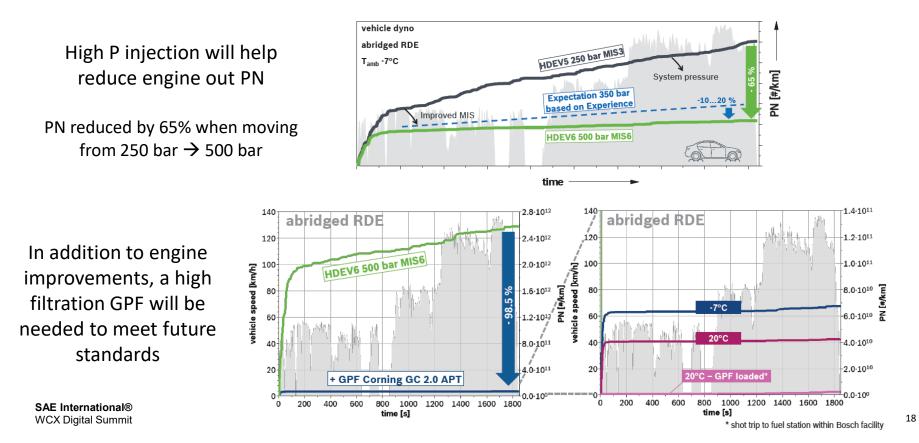
~0

AVL, TU Darmstadt 32nd Intl. AVL Conference Engine & Environment, 2020

Engine : 1L TGDI, 48V P2 mild hybrid (15 kW, 1.8 kWh)

Urban

Time [s]

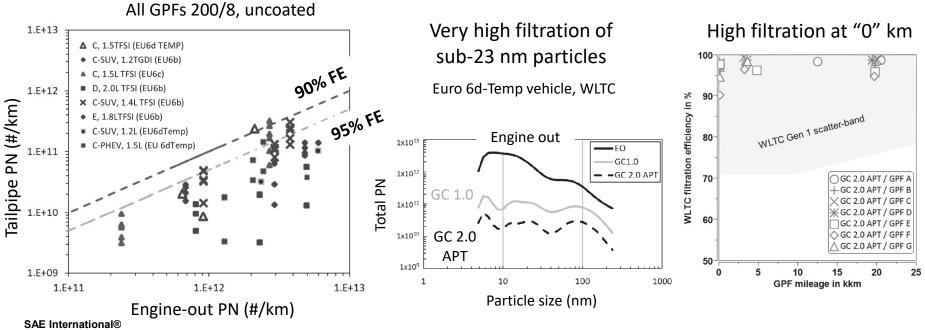

Results NOx: 1.2 mg/kmTHC: 2.8 mg/km

SAE International® WCX Digital Summit

Highway

Euro 7 regs will require very high filtration efficiency

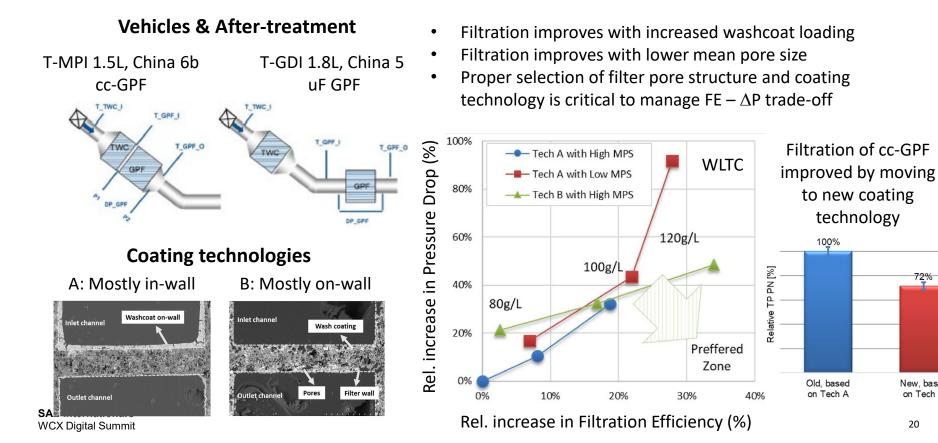
Bosch, 32nd Intl. AVL Conf. Engine and Environment, 2020



Next generation GPFs are delivering very high (> 95%) filtration efficiency

Corning 29th Aachen Colloquium Sustainable Mobility, 2020

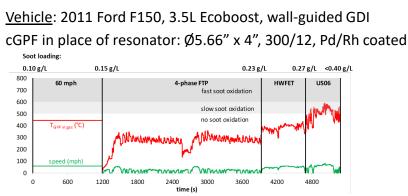
Accelerated Purification Technology


Surface modification in inlet channels delivers very high FE with little pressure drop penalty

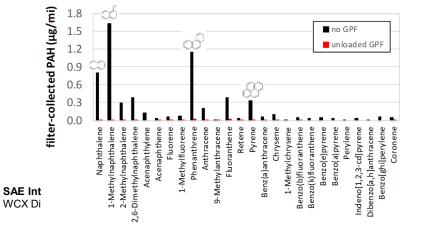
WCX Digital Summit

Various parameters affect GPF performance : GPF location, pore structure, coating technology, washcoat loading, ...

Corning, Kunming Sino-Pt., SAIC-GM-Wuling SAE 2020-01-0387

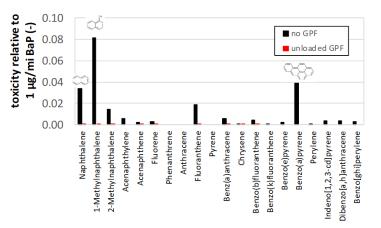

New, based

on Tech B

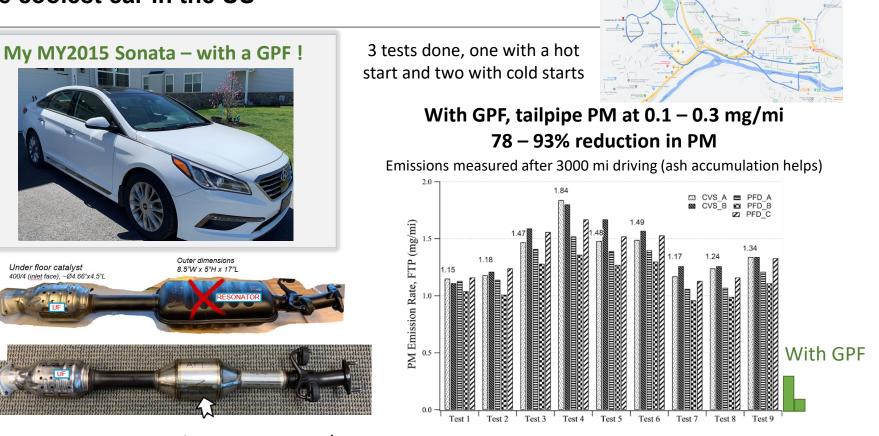

72%

Catalyzed GPFs (cGPF) are very effective at reducing cancer toxicity of PAHs associated with engine soot

U.S. EPA, CSS, 30th CRC Real World Emissions Workshop, 2021



cGPF greatly reduce the amount of PAHs emitted



And the related cancer toxicity of these PAHs

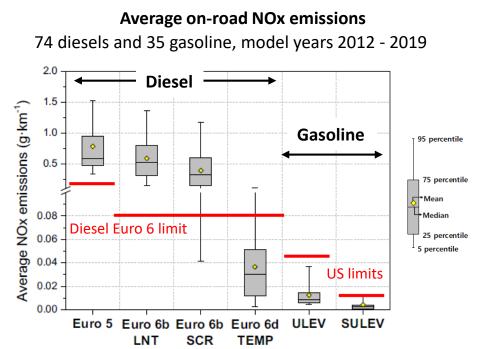
The coolest car in the US

Test route (at Corning, NY) ~ 11 miles

SAE International® WCX Digital Summit

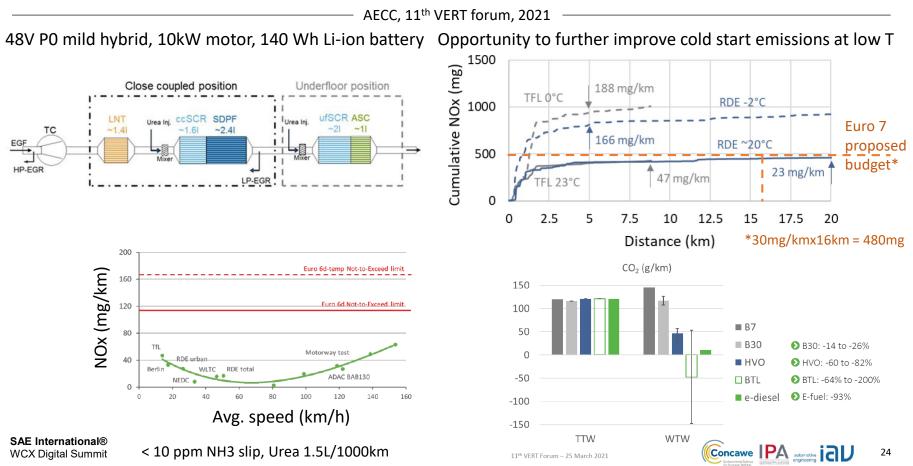
OEM

RETROFIT

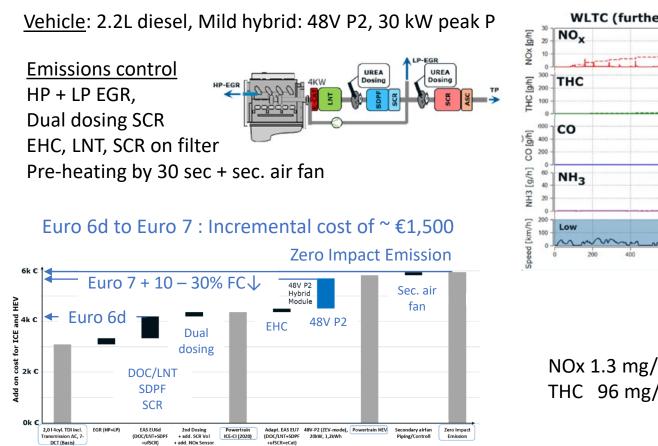

Uncoated GC 2.0 APT 200/8, 5.2" x 4.7"

PM emissions on FTP from MY 2016 Sonata UC Riverside, U. Minnesota Emiss. Control Sci. Technol. (2018) 4:247–259

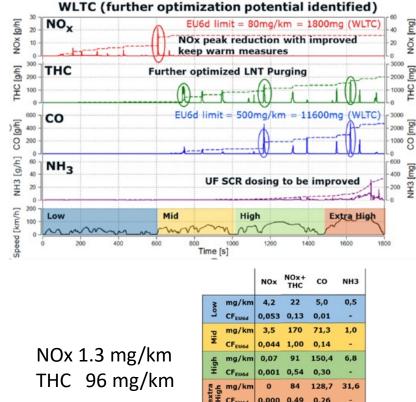
Diesel After-treatment systems Real-world driving regulations are resulting in NOx emissions well below limit



Natl. Institute of Env. Res. (NIER), Korea Science of the Total Env. 767, 2021, 144250 <u>https://doi.org/10.1016/j.scitotenv.2020.144250</u>

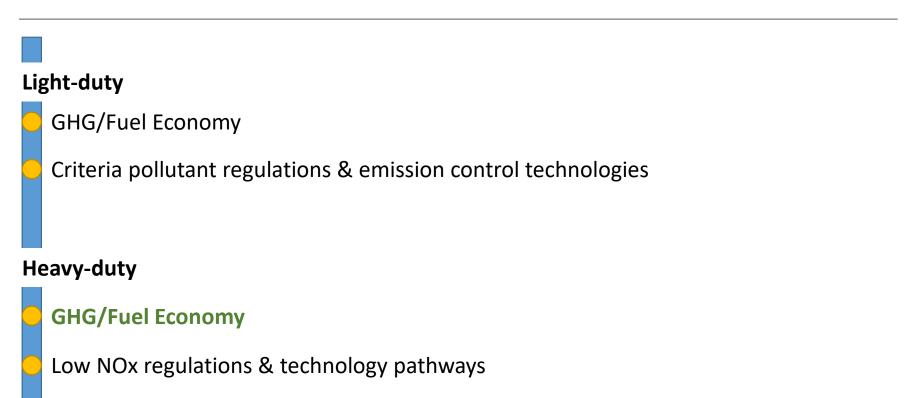


DOC = Diesel oxidation catalyst, CSF = Catalyzed soot filter, SCR = Selective catalytic reduction (of NOx) SCRF = SCR on filter, ASC = Ammonia slip catalyst, LNT = Lean NOx trap


Diesels: Very low NOx emissions demonstrated. Meeting the limits at T < 0 °C will require further improvements. Low C fuels can help reduce WtW CO₂.

"Zero impact" vehicle demonstrations are underway EHC with pre-heating seen as one pathway

AVL, 32nd Intl. AVL Conf. Engine & Environment, 2020


25

107

0,21

0,017 0,56

13,5

On-road criteria pollutant regulations

On-Road	d		2020	2021	2022	2023	8 2024	2025	2026	2027	2028	2029	2030
		Nationwide	US 2010 + AR	B Optional I	ow NOx		CA Low NO	x Ph 1		CA Low NOx	Ph 2		
USA		CA		•						l	US Cleaner Tr	ucks Initiative	e
		GHG / FC	GHG Phase 1	GHG Phas	e 2								
EU			Euro VI-D	Euro VI-E							Euro VII ?		
		GHG / FC					CO2 15% L	ower vs. 2019				CO2 30% Lo	wer vs. 2019
JP	٠		JP '16 (JE05 -	→ WHTC)									
		Nationwide	CN Vla City	All		c	N VIb (July 2023)			CN VII ?			
China	*1	Key Areas	BJ VIb										
		GHG / FC	Stage 3							Stage 4 ?			
India	8		BS VI Ph. 1		BS VI Ph. 2							BS VII ?	
Brazil			P-7 (~ Euro V	/) P-8 (~ Euro VI-C)									
Mexico	۲		US 2007 / Euro V	US 2010 / Euro VI									

Heavy-duty trucks will incur significant penalties for CO₂ exceedance

€ / %-CO

Cost Effectiveness :

<u>HD CO₂ Targets in Europe</u> 15% & 30% reduction by 2025 & 2030, respectively compared to 2019 baseline

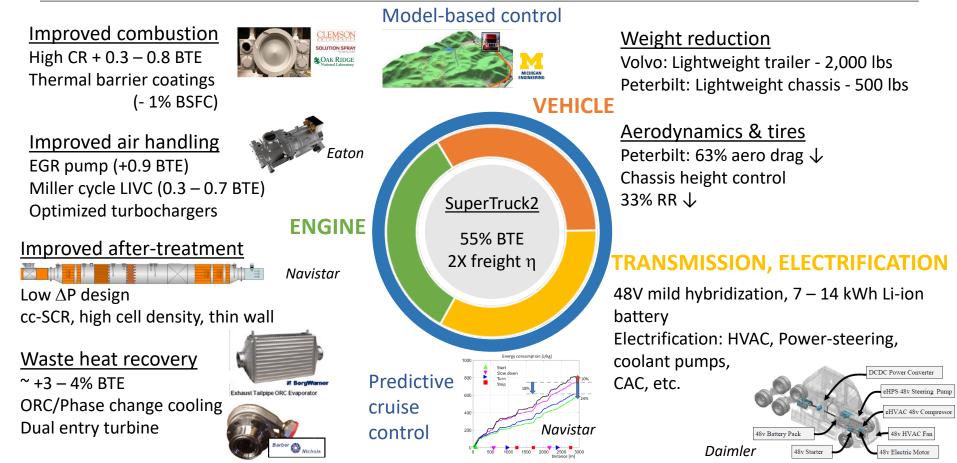
ACEA,	Ivial CIT 20	20			
	Q3-Q4 share	Configuration	GCW [T]	Engine [kW]	Cabin
4-UD	0.4%	R 4x2	>16	<170	All
4-RD	7.9%	R 4x2	>16	≥170 day cab ≥170 <265 sleeper cab	Day & sleeper
4-LH	1.9%	R 4x2	>16	≥265	Sleeper
5-RD	0.8%	T 4x2	>16	All-day cab <265 sleeper cab	Day & sleeper
5-LH	62.8%	T 4x2	>16	≥265 sleeper cab	Sleeper
9-RD	7.2%	R 6x2			Day
9-LH	9.2%	R 6x2			Sleeper
10-RD	0.1%	T 6x2			Day
10-LH	9.7%	T 6x2			Sleeper
	4-UD 4-RD 4-LH 5-RD 5-LH 9-RD 9-LH 10-RD	Q3-Q4 share 4-UD 0.4% 4-RD 7.9% 4-LH 1.9% 5-RD 0.8% 5-LH 62.8% 9-RD 7.2% 9-LH 9.2% 10-RD 0.1%	4-UD 0.4% R 4x2 4-RD 7.9% R 4x2 4-LH 1.9% R 4x2 5-RD 0.8% T 4x2 5-LH 62.8% T 4x2 9-RD 7.2% R 6x2 9-LH 9.2% R 6x2 10-RD 0.1% T 6x2	Q3-Q4 share Configuration GCW [1] 4-UD 0.4% R 4x2 >16 4-RD 7.9% R 4x2 >16 4-LH 1.9% R 4x2 >16 5-RD 0.8% T 4x2 >16 5-LH 62.8% T 4x2 >16 9-RD 7.2% R 6x2 9-LH 9.2% R 6x2 10-RD 0.1% T 6x2	Q3-Q4 share Configuration GCW [T] Engine [kW] 4-UD 0.4% R 4x2 >16 <170

Penalties 4,250 €/gCO₂/tkm in 2025, 6,800 €/gCO₂/tkm in 2030

Categories 5, 9, 10: Avg. CO₂ emissions ~ 60 g/tkm → €38,000 in 2025 if no improvement

SAE International® WCX Digital Summit

ACEA March 2020

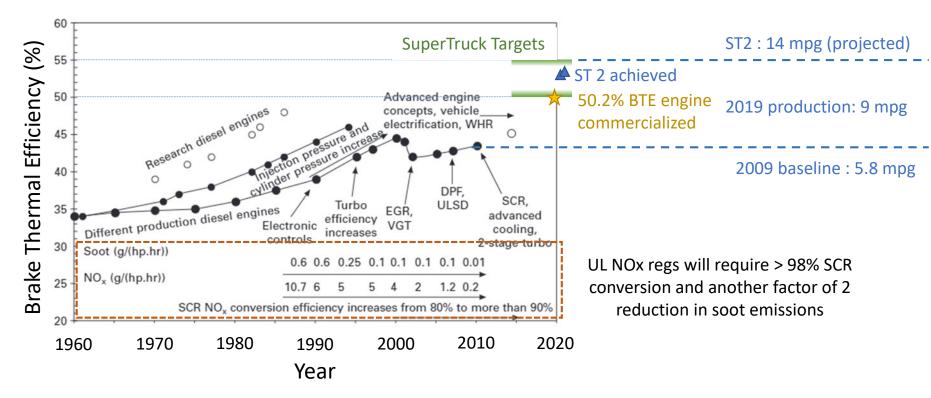

Pathway outlined to meet 2030 targets

FEV 41st Intl. Vienna Motorsymposium, 2020

		Торіс	Improvements	CO ₂ reduction	Total CO ₂ reduction	2019 level
) (abiala a ava (tivaa	Incr. vehicle length (80 cm)	4%	6%	
N		Vehicle aero/tires	Low resistance tires	2.5%		
9		Engine	CR increase by 3 units (VCR, piston redesign)	1.5%		5%
400		45 → 50% BTE	LP EGR	1.5%	5%	-
			Friction & parasitic losses	2%		target:
	ļ	Predictive powertrain control	Route & driving opt., gear shifts, re-fueling, energy & power mgmt., after-treatment etc.	5%	5%	2025 t 30%
600		48V mild hybrid	Regenerative braking, transients	1%	3%	get:
9	0 (25kW)		e-WHR	2%	570	2030 target:
		Sub-total			18%	203
750		Full hybrid (100 kW) + H ₂ ICE		12%	30%	Ţ

Super-Truck II : Various technologies being deployed to meet targets

https://www.energy.gov/eere/vehicles/annual-merit-review-presentations



Strategies from Super-Truck II participants for 55% BTE engines

https://www.energy.gov/eere/vehicles/annual-merit-review-presentations

			Cummins /	Navistar	PACCAR / Kenworth
Combustion & Air Mgmt.	 Thermal barrier coating High CR Miller cycle 2 stage EGR cooling 	 Thermal barrier coating High CR 20:1, wave piston LIVC Miller Turbo-comp. 	 Low heat transfer Reduced friction High efficiency turbo. 	 High T pistons Gasoline comp. ignition (GCl) : +0.7 - 1.3% BTE Cyl. deac. 2.9% FC ↓ on city cycle 	 LIVC Miller High efficiency turbo.
Waste heat recovery	Phase change cooling, Est. +3.5% BTE	Dual-loop : Coolant + exhaust Est. +2 – 3 % BTE	Dual-entry turbine +4.1% BTE	ORC : Expander eff. optimization >2.5% BTE to date	4% BTE target, coolant + exhaust
After- treatment	cc-SCR Model predictive controls	High cell, thin wall subs., low ΔP short DPF/SCR	Dual loop EGR	cc-SCR/AMOX for low NH ₃ /N ₂ O slip Heated DEF injector	cc-SCR

Putting brake thermal efficiency improvements in perspective

Navistar, Book chapter in "Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance", 2014 doi: 10.1533/9780857097422.2.225

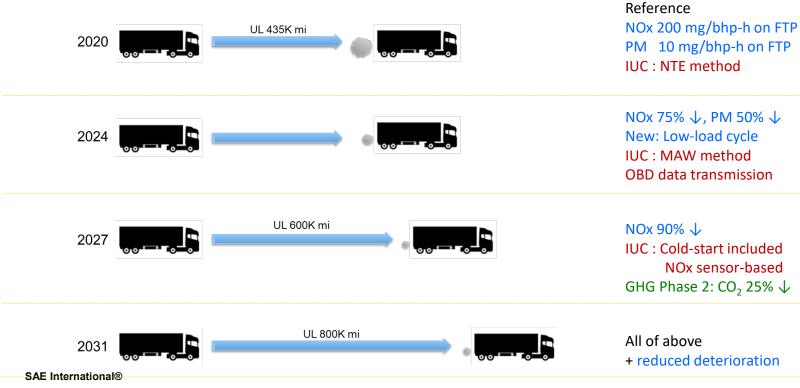
Outline

Light-duty

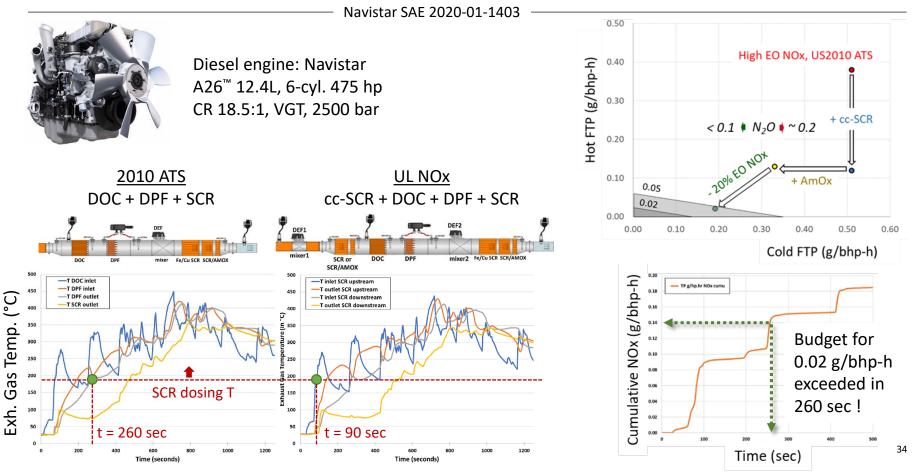
GHG/Fuel Economy

Criteria pollutant regulations & emission control technologies

Heavy-duty


GHG/Fuel Economy

Low NOx regulations & technology pa


California Ultra-Low NOx Omnibus Rulemaking Reduced NOx/PM, Strengthened in-use compliance, Extended durability

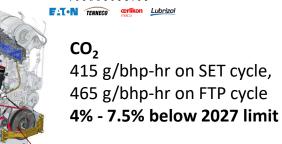
Regulatory Change

IUC = In-use compliance, NTE = Not-to-exceed, MAW = Moving avg. window, GHG = Greenhouse gas, UL = useful life

Challenges for meeting UL NOx targets : Very high NOx conversion, passive regen, low N_2O , low CO_2 and robust performance to EOL

AchatesPower

Opposed piston engines Meeting 2027 GHG targets + Ultra-low NOx -- without dual SCR ?


Vehicle demonstration : 10.6L OP, 3-cyl. + Peterbilt 579

PCALC HRR PVAS BTE [%] **Torque Nm** 2200 2000 1800 1600 1400 1200 1000 400 200 Engine Speed RPM Downstream Unit (under-floor) 20000 300 13x5 13x12 n 13x5 15000 SCRol **DEF Mixer** 1000 S STS STNO [-] **FB02 NOX 1** ETIR NOX 1 NOx in g/bhp-h Combined Cold Hot 2000 Engine out NOx ¥ 1750 EO NOX 2.72 3.09 3.03 2 1250 8 1000 TP NOx 0.67 0.008 0.016 õ 750 Tailpipe NOx 500 SCR conversion 97.5% 99.7%

Further improvements in CO₂ and NOx

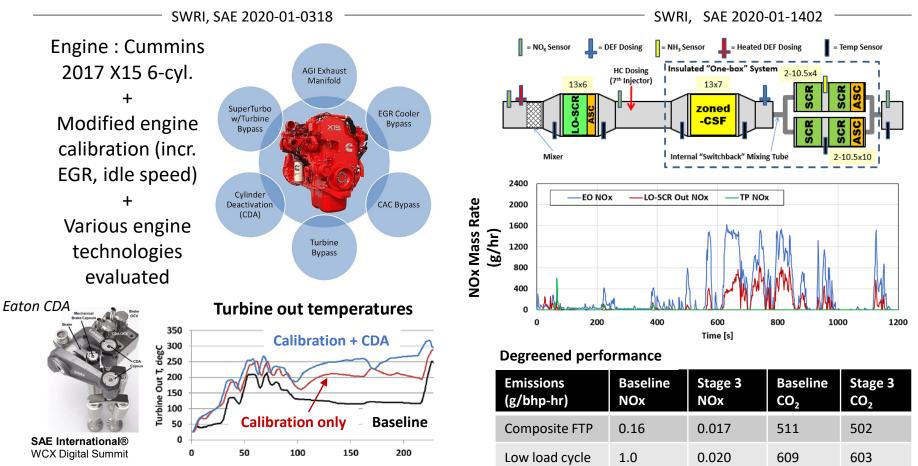
Torsional Couple

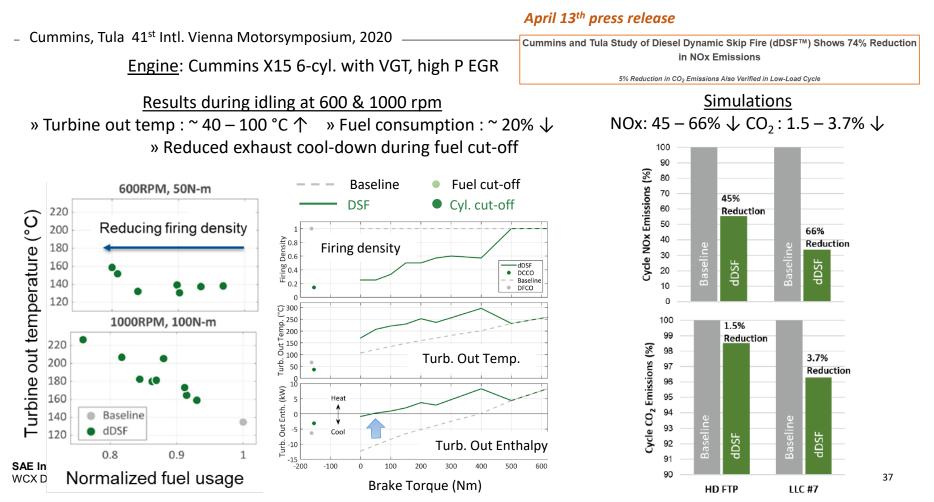
DOC/DPF + SCR + SCR/AMOX

SUPERTURBO

2021 Volvo Single Box Aftertreatment + Advanced catalyst technology

Simulations for HD-FTP cycle: NOx : 0.007 g/hp-hr


Peak BTF = 49.2%


EGR Outlet

SuperTurbo

Pathways to CARB UL NOx – without CO₂ penalty – being evaluated Engine calibration, cylinder deactivation & light-off SCR

Dynamic cylinder deactivation can help reduce NOx and CO₂ simultaneously

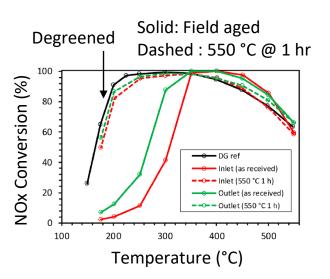
S poisoning of Cu-SSZ-13 : Thermal treatment up to 550 °C can recover much of the activity, but with CO₂ penalty

higher temperatures

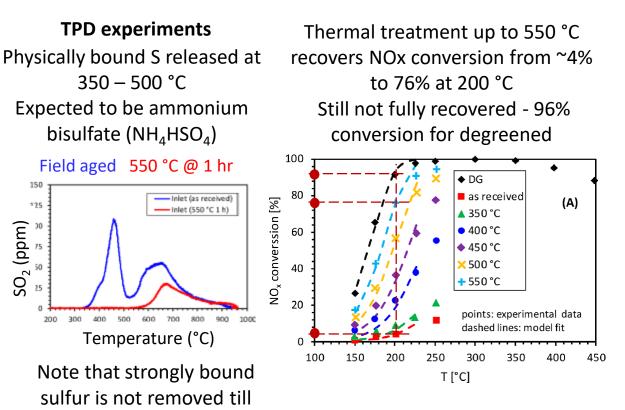
Cummins SAE 2020-01-1319

125

75


50

25

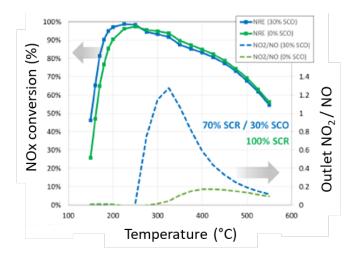

200 300 400

50₂ (ppm)

Comparison of SCR activity of degreened and field aged samples in lab

Reactor inlet: NOx = NH_3 = 200 ppm, H_2O 7%, CO₂8%, O₂10%, SV = 60K hr-1

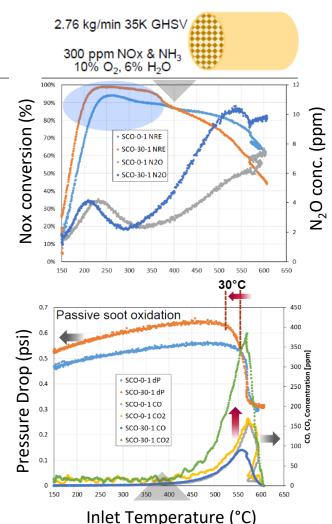
38


Improved SCR on DPF performance : Selective catalytic oxidation (SCO) of NO \rightarrow NO₂ using Mn-based catalyst

PNNL, PACCAR DOE Annual Merit Review 2020

Catalyst:

SCO : 10% Mn/ZrO₂, SCR = CuCHA Physically mixed 30% SCO + 70% SCR


Higher NO_2 in outlet NO \rightarrow NO₂ oxidation increased by SCO

<u>Std SCR</u> : 300 ppm NO, 10% O₂, 6% H₂O, SV=35K/hr

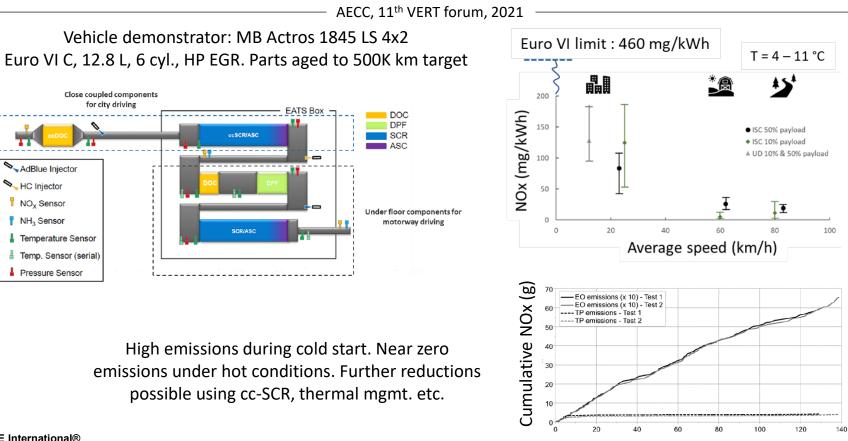
Combined SCR & passive soot regen, soot load 4 g/L

- NOx conversion increased from ~ 70%
 → 90% at 200 °C
- Passive soot oxidation initiated ~ 30 ° C earlier
- Higher fraction of complete soot oxidation (CO₂ vs CO) with SCO catalyst

Euro VII : Expect lower limits coupled with broad changes in in-use testing

Key changes under consideration

Tailpipe Limits

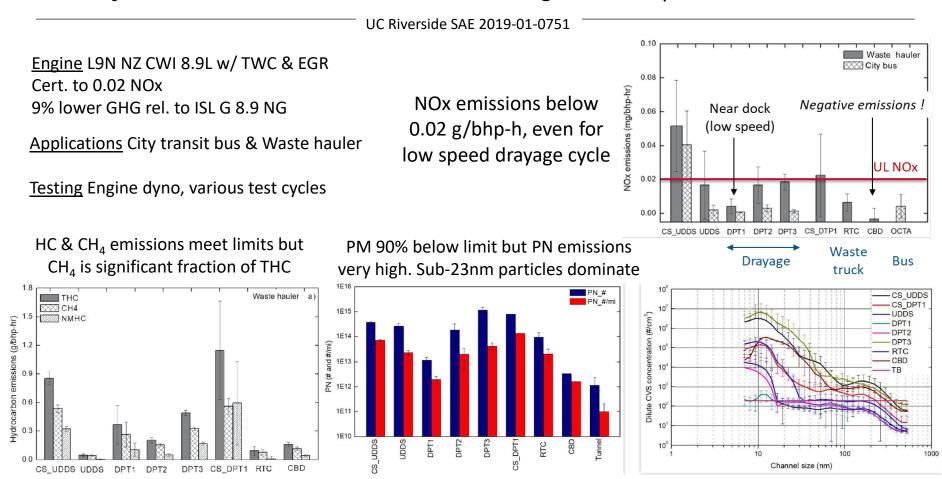

Separate limits based on short vs. long trips : fixed "budget" for short trips Reduced limits for most species. (focus on NOx and particulates) Reduced PN limit. Inclusion of sub-23 nm particles (down to 10 nm). N_2O and CH_4 to be accounted as GHGs

In-use testing

All driving conditions included - No minimum trip distance, no weightage for cold start emissions, inclusion of regen emissions. Extended boundary conditions : T down to – 10 °C, Altitude up to 2,200 m

Increased durability

Low NOx emissions demonstrated on European truck



SAE International® WCX Digital Summit

41

Conducted work (kWh)

Stoichiometric natural gas engines Already below UL NOx levels, need to address high PN & CH₄

Next generation DPFs will address high ash storage and low ΔP

+100%

200

2.0

1.5

1.0

0.5

DPF ΔP (kPa)

Corning, SAE 2020-01-1434

400

Novel cell designs with increased

Mileage x 1000 km

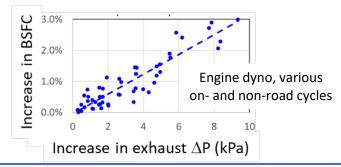
2000

1500

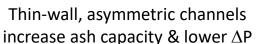
1000

500

600

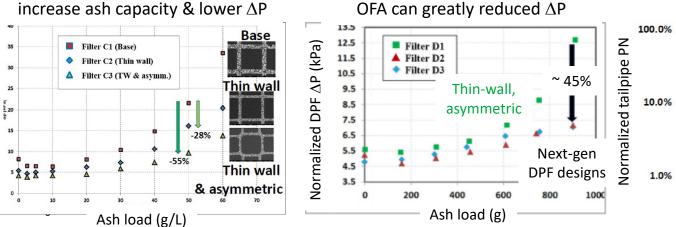

00

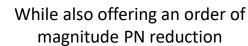
Load

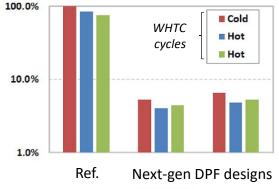

Ash

Increase in DPF ΔP with ash (no soot). Line haul operation.

Increase in fuel consumption with — exhaust system backpressure

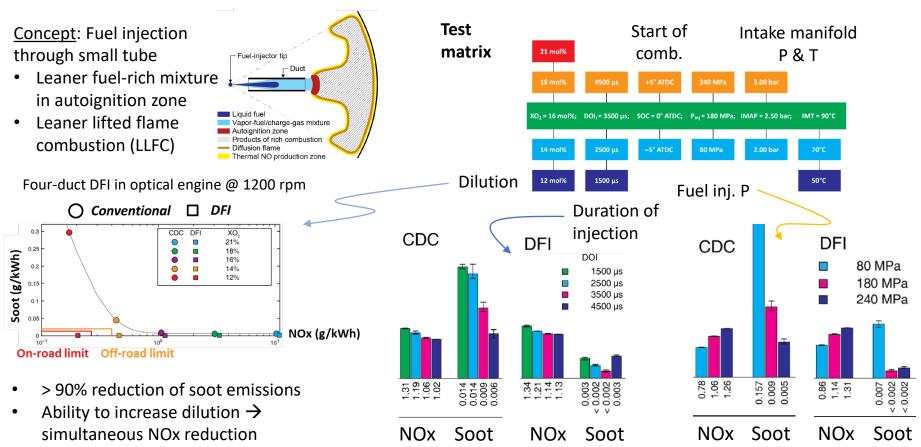



Longer useful life \rightarrow Need to address lifetime $\Delta P \&$ fuel penalty with ash accumulation



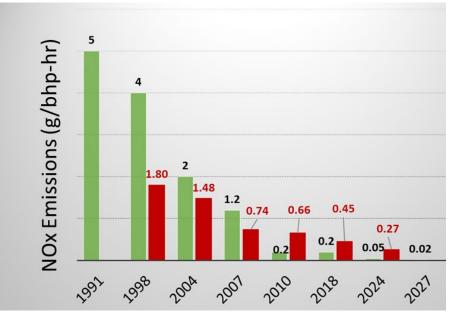
@5g/I soot (kPa)

DPF ΔP



Ducted fuel injection (DFI) promises to break the soot-NOx trade-off

Sandia Natl. Lab, SAE Int. J. Engines 13(3):345-362, 2020


Diesel trucks will emit lower NOx compared to electric trucks when including upstream emissions

To BE or not to BE ..

Model Year	Class 2b-3*	Class 4-8	Class 7-8 Tractors
2024	5%	9%	5%
2025	7%	11%	7%
2026	10%	13%	10%
2027	15%	20%	15%
2028	20%	30%	20%
2029	25%	40%	25%
2030	30%	50%	30%
2031	35%	55%	35%
2032	40%	60%	40%
2033	45%	65%	40%
2034	50%	70%	40%
2035 +	55%	75%	40%

Diesel Truck Emission Limit NOx from electricity generation (US)

Electricity NOx emissions

https://www.eia.gov/electricity/state/unitedstates/

For a copy of the slides:

What to look for in 2021

joshia@corning.com https://www.linkedin.com/in/joshiav/

Policies set by the Biden administration and the new EPA California waiver, new CO2 targets, incentives for electrification, etc.

Heavy-duty Cleaner Trucks Initiative (national version of California's Low NOx) Expect some alignment with California standards

Euro 7 / VII Proposal expected by end of year after stakeholder inputs.

China 7 / VII ? (no public announcements so far)

Climate Law in Europe and potential revisions of CO₂ targets Possible revision to the already stringent CO₂ tailpipe limits, both for light- and heavy-duty.

EPA Tier 4 / CARB LEV IV SULEV 20, PM 1 mg/mi (nationwide)

Non-road low NOx rulemaking (US)?

Non-exhaust emissions – new data and some progress towards regulatory actions